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The influences of long range Coulomb interaction on Mach-Zehnder interferometer constructed on quantum
Hall edge states is studied employing the bosonization method. The interaction of interchannel zero modes is
shown to give rise to a characteristic energy scale which is of the order of the period of experimentally
observed lobe pattern of visibility. The nonmonotonic behavior of visibility as found by Chalker et al. is
understood analytically using the asymptotic analysis.
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I. INTRODUCTION

An electronic Mach-Zehnder interferometer �MZI� is a
type of matter wave interferometer that has been realized
with �integer� quantum Hall �QH� edge systems.1–3 Among
many interesting phenomena observed in electronic MZI, we
focus on the puzzling lobe pattern of the interference visibil-
ity of differential conductance ��V� �V is a bias voltage�.2,4

This lobe pattern is hard to understand in the framework
of noninteracting electrons so it is generally believed to be
due to the many-body interaction. A few theoretical propos-
als have been made to explain this lobe pattern: the introduc-
tion of additional edge modes,5,6 the decoherence and finite
temperature effect,7 and the shot-noise effects.8 The visibility
of MZI of fractional QH edges which does not include the
long range Coulomb interaction �LRCI� has been also stud-
ied recently.9

In this paper, we generalize the approach of Ref. 7 in two
ways: �1� LRCI of the zero modes �see below� between two
channels which comprise MZI is included and �2� both the
integer QH states and the Laughlin fractional QH states at
filling fraction �=1 / �2n+1� ,n=1,2 , . . . are considered. In
the fractional case, we have to take both the fractional qua-
siparticle and the electron tunneling into account at point
contacts.

A possible relevance of the interchannel LRCI may be
argued as follows. The length scale of MZI in Ref. 2 is about
R�5 �m. Taking the typical dielectric constant of QH de-
vices to be ��10, the associated interchannel Coulomb en-
ergy scale Ec is e2 /R��5�10−2 �eV, which is of the same
order of magnitude as the observed period of the lobe pattern
of visibility �see Figs. 3 and 4 in Ref. 2�. This energy scale is
well expected to depend on the geometry of MZI as well as
the applied magnetic field. The investigation of this inter-
channel interaction of zero modes �defined below� requires a
very careful treatment of the so-called Klein factors of
bosonization formula, which constitutes the most significant
part of this paper.

The results of Ref. 7, in particular, the nonmonotonic be-
havior of visibility as a function of bias voltage �Fig. 6 of
Ref. 7�, depend crucially on the asymptotic behavior of the
one-electron Green’s function in the presence of many-body
interactions. We analyze the asymptotic behavior of the
Green’s function employing the method of asymptotic

analysis,10 thus providing more analytic understanding of the
results. It turns out that the momentum dependence of the
interaction matrix element plays an important role as we will
discuss. The main results of this paper are �1� the exact time-
dependent Klein factor which gives rise to the interchannel
Coulomb energy scale Ec �Eq. �16��, �2� the tunneling current
which incorporates the energy scale Ec �Eqs. �23� and �24��,
and �3� the analytic form of the visibility �35�.

II. MODEL OF MZI OF QH EDGES

The Hamiltonian which applies to both the integer and
fractional Laughlin QH edge state and acts within each chan-
nel is11,12

Ĥintra = �
i=1,2

�vi

�
� dx��i�x��2

+
1

2
� dxdyV�x − y� �

i=1,2
�i�x��i�y� , �1�

where i=1,2 is the channel index of MZI �see Fig. 1 of Ref.

7 for a schematic view of MZI�. �i�x�=
N̂i

Ls
+ 1

2��x	i is the

density operator of edge i. N̂i is the number operator of edge
i whose momentum is zero, hence it is often referred to as a
zero-mode operator in the context of bosonization.13 � is the
filling fraction of QH system and Ls is the system size. 	i is
the boson operator which describes the collective harmonic
modes with nonzero momentum. vi is the velocity of collec-
tive modes of channel i. Two channels will be assumed to be
identical so that v1=v2�v0. V�x�= e2

�	x2+a2 is the LRCI acting
within each channel. a is a short-distance cutoff. The funda-
mental commutation relation of density operators is11

��i�x� ,� j�y��= i
�ij
�

2��x��x−y�.
There are two interactions which couple two channels

i=1,2. One is the tunneling interaction at two quantum point
contacts �a and b� which play the role of beam splitters of an
optical interferometer,

Ĥt = ta�1
†�0��2�0� + tb�1

†�x = l1��2�x = l2� + H.c., �2�

where the operator �i�x� can be either electron or quasipar-
ticle operator depending on the character of the point con-
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tacts. The bosonized expression of these operators is given in
Eqs. �7� and �11�. The tunneling amplitudes depend on the
enclosed flux 
 via tatb

�= 
tatb
�
ei
/
0, where 
0 is the flux

quantum.7

The other interaction which can couple two channels is
the LRCI between two channels. For simplicity, we consider
the interaction between zero modes only. This is because the
interchannel LRCI becomes singular logarithmically in the
zero-momentum limit �the singularity is cut by the finite sys-
tem size�. The Hamiltonian for the interchannel LRCI is
taken to be

ĤC = ECN̂1N̂2. �3�

Extracting the zero-mode parts from Eqs. �1� and �3�, we can
define a Hamiltonian for zero modes only,

Ĥzero =
�v0

Ls�
�

i

N̂i
2 + Eintra�

i

N̂i
2 + EcN̂1N̂2. �4�

Eintra is an energy scale from the intrachannel Coulomb in-
teraction �the second term of Eq. �1��. The chemical potential
of each channel is determined by the average number of

electrons in each channel �N̂i�.7 Let us define an operator �N̂i
which describes the fluctuation of electron number around
the average value,

�N̂i � N̂i − �N̂i�, ��N̂i� = 0. �5�

The Hamiltonian for the fluctuations �N̂i can be obtained by
inserting Eq. �5� into Eq. �4� and discarding constant terms,

Ĥ0 = �
i=1,2

�i�N̂i + EC�N̂1�N̂2, �6�

where a contribution from Eintra�iN̂i
2 is neglected since the

relative fluctuations between two channels will play a more
important role in interference. As will be shown below, with
the form of Eq. �6�, the time evolution of Klein factors can
be determined exactly.

Bosonization of electron and quasiparticle operators, The
bosonized expression for the electron operator in the edge
state of Laughlin quantum Hall liquid at filling fraction � is
given by11,13,14 �i=1,2�

�e,i�x� =
1

�2�a�1/2Fe,ie
−i2�N̂ix/Ls�e−i	i�x�/�, �7�

where Fe,i is the Klein factor which implements the Fermi
statistics of electron operators of different species. It satisfies
the following relations:

�N̂i,Fe,j� = − Fe,j�ij, FiFi
† = 1,


Fe,i,Fe,j� = 0, 
Fe,i,Fe,j
† � = 0, i � j . �8�

Using the bosonization formula of Ref. 15 �with appropriate
changes of notations�, Eq. �8� can be explicitly realized as
follows:

Fe,1 = ei��N̂1+N̂2�/2�e−i�1/�,

Fe,2 = e−i��N̂1+N̂2�/2�e−i�2/�, �9�

where �1,2 are the operators with zero momentum which are

dual to N̂i in the following sense:

��i,N̂j� = + i��ij . �10�

The bosonized expression of the quasiparticle operator is

�q,i�x� =
1

�2�a�1/2Fq,ie
−i2�N̂ix/Lse−i	i�x�. �11�

We could not find the explicit expression for the Klein fac-
tors of quasiparticle operator in literature. Based on the idea
that the quasiparticle behaves like a fraction of an electron,
we can take the �1 /��th root �recall 1 /� is an integer� of Eq.
�9�, thus leading to

Fq,1 = ei��N̂1+N̂2�/2e−i�1,

Fq,2 = e−i��N̂1+N̂2�/2e−i�2. �12�

The validity of Eq. �12� can be confirmed by the fact that
Fq,1 and Fq,2 satisfy the following commutation relations of
fractional statistics:

�N̂i,Fq,j� = − �Fq,j�ij, Fq,1Fq,2 = e−i��Fq,2Fq,1. �13�

III. TIME EVOLUTION OF KLEIN FACTORS

The time evolution of Klein factors under the action of the
Hamiltonian �6� can be determined exactly. We use the fol-
lowing operator identity.13 Let A ,B ,D be some operators sat-
isfying �A ,B�=DB and �A ,D�= �B ,D�=0. Then for arbitrary
function f�A� of the operator A, we have

f�A�B = Bf�A + D� . �14�

Identifying

A → Ĥ0, B → Fe,1, D = − �1 − Ec�N̂2, �15�

we find �with f�A�=eiAt�

Fe,1�t� = Fe,1�t = 0�e−i�1t−iEc�N̂2t. �16�

The dependence of Fe,1�t� on �N̂2 gives rise to the additional
time dependence for correlation functions, which is not
present in Ref. 7. This time dependence will make the vis-
ibility exhibit features around the energy scale Ec �see Eq.
�36��. Similarly,

Fe,2�t� = Fe,1�t = 0�e−i�2t−iEc�N̂1t. �17�

As for quasiparticle operators, we have

Fq,1�t� = Fq,1�t = 0�e−i��1t−i�Ec�N̂2t,

Fq,2�t� = Fq,2�t = 0�e−i��2t−i�Ec�N̂1t. �18�
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IV. TUNNELING CURRENTS

The tunneling current operator is given by �electron tun-
neling is assumed�

Î = �− e�
dN̂2

dt
= �−

ie



��Ĥtotal,N̂2�

= �−
ie



��ta�1

†�0��2�0� + tb�1
†�l1��2�l2� − H.c.� ,

�19�

where Ĥtotal is the sum of Eqs. �1�–�3�. A straightforward
time-dependent perturbation in ta,b yields7

I � �Î�t = 0�� = −
e



�

−�

0

dt��
k=1

4

Xk�t� + H.c.� ,

X1�t� = 
ta
2���1
†�0,0��2�0,0�,�2

†�0,t��1�0,t��� ,

X2�t� = 
tb
2���1
†�l1,0��2�l2,0�,�2

†�l2,t��1�l1,t��� ,

X3�t� = tatb
����1

†�0,0��2�0,0�,�2
†�l2,t��1�l1,t��� ,

X4�t� = ta
�tb���1

†�l1,0��2�l2,0�,�2
†�0,t��1�0,t��� , �20�

where the expectation value should be taken with respect to
the eigenstates of the Hamiltonian Hintra+HC �Eqs. �1� and
�3��. For the quasiparticles, the current I must be multiplied
by �. The visibility of interference originates from the corre-
lation functions X3�t� and X4�t�.

Each correlation function Xi�t� can be factorized into the
product of the nonzero-mode �also called oscillators� contri-
bution and the zero-mode contribution. Furthermore, the
nonzero-mode contribution is a product of that of channels 1
and 2, since the Hamiltonian of the nonzero modes of chan-
nels 1 and 2 commutes each other. The nonzero-mode con-
tribution is identical with that of Ref. 7 and the details are
omitted. The zero-mode contribution, however, cannot be ex-
pressed as a product of the contribution from each channel,
since the zero modes of two channels are coupled by the
Hamiltonian �3�.

In spite of this noncommutativity, the zero-mode contri-
bution can be computed exactly owing to the results �16� and
�18�. For example, the zero-mode contribution of X1�t� in the
case of the quasiparticle tunneling is given by

�Fq1
† �0�Fq2�0�Fq2

† �t�Fq1�t�� = ei���2−�1�te−i�2Ect. �21�

To obtain Eq. �21�, we insert the results �16� and �18� for the
time-dependent Klein factors, then employ the commutation
relation between Klein factor and the zero-mode operator

�N̂i, and use ��N̂i�=0.
Using complex conjugation properties of Xi, it can be

shown that �I0 and I
 defined in an obvious way�

I = I0 + I
 = −
e



�

−�

�

dt�Y0�t� + 2 Re Y
�t�� . �22�

The visibility is basically determined by the flux-
depedendent conductance �
=dI
 /dV�eV=�2−�1�. For the

electron tunneling, the flux-independent part is

Y0
�e��t� =

1

�2�a�2 �
ta
2 + 
tb
2�ei��2−�1�t

��ge
2�x = 0,− t�e−iEct − H.c.� , �23�

and the flux-dependent part is

Y

�e��t� =

tatb
�

�2�a�2ei��2−�1�te2�i��N2�l2−�N1�l1�/�Ls

��ge�− l1,− t�ge�− l2,− t�e−iEct − H.c.� . �24�

ge�x , t� is the nonzero-mode contribution for the one-electron
Green’s function, which has been obtained in Ref. 7. At T
=0,

ce�x,t� =
1

�
�

0

� dq

q
e−aq�1 − cos�qx + �qt�� ,

se�x,t� =
1

�
�

0

� dq

q
e−aqsin�qx + �qt� , �25�

where the frequency of nonzero modes is given by

�q = q�v0 + vc ln
�

qa
�, vc =

�e2

2�
�
, �26�

where qa�1 is assumed and ��1.13 is a numerical con-
stant. The logarithmic factor of Eq. �26� comes from the
intrachannel Coulomb interaction matrix element. The major
difference from those of Ref. 7 is the presence of the factor
e�iEct� which originates from the interchannel LRCI. For
quasiparticle tunneling, the following modifications are to be
made:

Ec → �2Ec, ��2 − �1� → ���2 − �1� ,

ce�x,t� → �2ce�x,t�, se�x,t� → �2se�x,t� . �27�

We note that the energy scale Ec enters in such a way that
it is not a mere additive renormalization of the chemical
potential. Also, in higher 2nth order expansion in tunneling
amplitude ta , tb, a factor e�inEct� will emerge since this factor
is generated by the commutation of Klein factors. Recall that
the Klein factors accompany the tunneling amplitude in Eq.
�2�. Thus, one can expect some features of visibility which is
due to ge�x , t� will appear being centered at energies nEc with
decreasing magnitude. In the second-order expansion of ta,b,
the visibility �or equivalently flux-dependent conductance
�
� is found to exhibit nonmonotonic behavior.7 Let us try to
understand the origin of such behavior in a more analytic
way.

V. ASYMPTOTIC BEHAVIOR OF THE ONE-ELECTRON
GREEN’S FUNCTION

The correlation function ge�x , t� cannot be evaluated in a
closed form, so that an analytic form of asymptotic behavior
will be of great help in understanding the nonmonotonic de-
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pendence of conductance on bias. First of all, we note that
the equal-time Green’s function ge�x , t=0� is independent of
interactions. However, we are mostly interested in the long-
time limit, so that we focus on the domain 
x /vct
�1. We
write ge�x , t� in the following form:

ge�x,t� = exp�− const + I�x,t�� ,

I�x,t� =
1

�
�

0

� dqe−aq

q
e−i�q�x,t�, �28�

where const= 1
��0

� dqe−aq

q is a �infinite� constant, and

�q�x,t� = qx + �qt �29�

is a phase function. In fact, the integral I�x , t� diverges at
q=0 and the divergence is cancelled by the above constant.
In spite of this divergence, the form of Eq. �28� is more
preferable for the asymptotic analysis. To avoid the diver-
gence at q=0, we employ the technique of dimensional
regularization:16 replace the factor 1 /q of Eq. �28� by 1 /q1−�

with ��0 and take the limit �→0 limit and extract the
finite contribution. An infinity which appears in the extrac-
tion is cancelled by the infinite constant mentioned above.

In the long time/distance limit, the phase ��x , t� becomes
very large in the generic domain then we can use the station-
ary phase approximation.10 In general, there exist two con-
tributions to the asymptotic behavior of the integral of the
type of I�x , t�: one from the ends of integral interval �q=0
and q=�, clearly the contribution from q=� is negligible�
and the other from the stationary point�s� where
d�q�x , t� /dq=0.

The contribution from the end point at q=0 can be ob-
tained by the integration by parts method.10 Define a variable
u as follows:

u = u�q� = q
x

t
+ �q = qvc ln� �

qa
� , �30�

where �=�e��x/t�+v0�/vc. Changing the integration variable
from q to u, the relevant integral becomes

�
0

�

du�dq

du
� e−aq

�q�u��1−�e−itu. �31�

Let us consider the case where u�0. Within logarithmic
accuracy, we have q�u�� u

vc
�ln

�vc

ua �−1 and dq
du � 1

vc

1
ln ��vc/ua

with
��=e��x/t�+v0�/vc−1. Performing the partial integration along
imaginary axis,10 taking �→0 limit, and extracting the finite
part, we obtain

Iend�x,t� � − ln�vct

a
ln��vct/a�� − i sign�t��/2. �32�

The effect of LRCI within each channel is reflected in the
double-logarithmic correction ln�ln��vct /a��. Note that this
correction also depends on position l1 , l2 through �. In terms
of the Green’s function ge�x , t�, the end-point contribution is
roughly 1 / �t ln t�1/�, which evidently cannot cause the non-
monotonic behavior of the flux-dependent conductance �
 as
shown in Ref. 7.

Next we turn to the contribution from stationary point.
The condition for the stationary point is

�d�q�x,t�
dq

�
q=qc

= 0 → −
x

t
= �d�q

dq
�

q=qc

� vc ln
�̄

qca
,

�33�

where �̄=�e�v0/vc�−1, and qc is determined by x / t. For the
condition �33� to be satisfied for the very long-time limit
�namely, 
x /vct
�1�, there should be a point where


d�q

dq 
q=qc
=0. In other words, the frequency should attain a

local maximum or mininum at finite momentum. Therefore,
if �q is a monotonic function of q then there will be no
stationary point, so that the nonmonotonic behavior of vis-
ibility would not appear. Another dispersion �q=v0q−bq3

with b�0 �Ref. 7� which also shows nonmonotonous behav-
ior satisfies the local maximum condition. It is easily seen



d2�q�x,t�

dq2 
q=qc
=−

vc

qc
. Then the standard stationary phase

approximation10 gives

Ista�x,t� �	 2�


t
qcvc
e−i�/4 sgn te−i�q�x,t�
q=qc. �34�

In the long-time limit, 
Iend�x , t�
� 
Ista�x , t�
. Were it not for
the 1 /q singularity at q=0, the stationary point contribution
�1 /	t� would dominate the singularity-free end-point contri-
bution �1 / t�. Equation �34� explains the oscillating behavior
of the Green’s function at the long-time tail as found in Fig.
4 of Ref. 7. Now the asymptotic form of the correlation
function ge�x , t� is given by

ge � eIend+Ista �
1

� vct

a ln��̄vct/a��1/� �1 + Ista� . �35�

VI. DISCUSSIONS

The origin of the nonmonotonic behavior of visibility
found in Ref. 7 is the oscillating tail of the one-particle elec-
tron Green’s function. In this paper, we have found that the
oscillating tail is due to the specific momentum dependence
of collective excitation. The investigation of the detailed
form of the visibility requires the numerical integration,7 but
the essential features can be understood qualitatively using
Eq. �35�. Taking the typical time as
t�1 / 
eV−Ec
, ��=
vc /a�, one can estimate the integral of
Eq. �22� to obtain

�
 � �
eV − Ec
ln

eV − Ec


�
��2/��−2

��1 + � eV − Ec

�
�1/2

cos��̃c�V��� , �36�

where �̃c�V� is basically the phase function �q evaluated at
the stationary point, and it slowly varies as a function of bias.
The factor cos��̃c�V�� is responsible for the nonmonotonic
behavior. At integer filling �=1, the presence of energy scale
Ec is not so pronounced because the exponent of prefactor of
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Eq. �36� vanishes. Compared to Ref. 7, the most dramatic
difference with QH case ���1, for electron tunneling�
would be the strong suppression of amplitude near eV�Ec.
As for the quasiparticle tunneling �at ��1�, the time integral
of Eq. �22� diverges in the long-time limit, which implies
that the MZI is entering the strong-coupling regime at low
temperature. It is well known that the strong-coupling regime
of QH point contact is well described by the electron-
tunneling picture.17 At high temperature, the divergence in
the long-time limit is cut by 1 /T. Thus as temperature de-
creases, we can expect a crossover from quasiparticle tunnel-
ing to electron tunneling, and at the same time the interchan-
nel Coulomb energy scale changes from �2Ec to Ec. All these
features can be readily checked experimentally.

We have to note that the results of both Ref. 7 and the
present paper have been obtained in the second-order pertur-
bation with respect to tunneling amplitudes. As such, both

results do not seem to explain the experimental results of the
periodic behavior of visibility. However, the present paper
indicates the existence of a series of energy scales nEc�n
=1,2 ,3 , . . .�, and it clearly suggests that we need the higher-
order perturbations to reveal a possible underlying periodic
structure of visibility.
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